POPSTRAS: Extraction d’informations à partir de tableaux semi-structurés manuscrits du Fichier Domiciliaire pour une histoire de la population de Strasbourg (1871-1939) (ANR, 2026-2030)
Partners : SAGE,
OCTOPUSSY : Nouvelles techniques computationnelles pour l'optimisation de polymères (ANR, 2024-2028)
Partners : PBS, PIMM, COBRA, University of York
ODD : Online Deep anomaly Detection (ANR, 2023-…)
Chaire IA RAIMO : A Road toward safe Artificial Intelligence in MObility (ANR, 2020-2024)
DynaTeam : Dynamique de coordination d'équipe (ANR, 2023-…)
Partners : CETAPS, Équipe RI2C du LITIS
FAMOUS : Fair Multimodal Learning (ANR, 2023-…)
Partners : LIS, LHC, INT, Euranova
FINLAM : Foundation INtegrated models for Libraries Archives and Museum (ANR, 2023-…)
Partners : TEKLIA, BnF
SHARP : Machine Learning for Safe Vehicle Charging Points (ANR, 2023-…)
Partners : Citeos Solutions Digitales (VINCI Energies), GREYC
CoDeGNN : Convolution and Decimation for Graph Neural Networks (ANR, 2021-2025)
Partners : GREYC, LIFAT
MediSeg : Deep medical image segmentation: what’s next? (ANR, 2021-2025)
Partners : LMI, ImVIA, Équipe QuantIF du LITIS
MultiTrans : Gradual Multi Transfer Learning for Safe Autonomous Driving (ANR, 2021-2025) Partners : Équipe STI du LITIS, I3S, Valeo.ai
EXO-POPP : Optical Extraction of Handwritten Named Entities for the Marriage Certificates of the Population of Paris (1921-1946) (ANR, 2021-2024)
Main partner : LARHRA
CATCH : Automatic Understanding of Human Sensors Testimonials (ANR, 2021-2023)
Partners : Saagie, Atmo Normandie
LabCom L-Lisa : Common Lab LITIS-Saagie (ANR, 2021-2025)
Partner : Saagie
DeepART : Medical Image collection, segmentation and anonymization for DEEP learning in Adaptive Radiation Therapy (2020-2022)
Partners : Centre François Baclesse, Centre Henri Becquerel, GREYC
AMCAS : Machine Learning for Understanding Secondary Atomization (2020-2022)
Partner : CORIA
THESIS : THermoplastic Erosion Shield for new generation Ice protection System (2019-2022)
Partners : Zodiac Aerosafety Systems (nowadays SAFRAN), Analyse and Surface, Dedienne Multi-plasturgy Group, IRSEEM, GPM, CORIA
Partners : UMR IDEES, UMI UMMISCO
APi : Taming the Beast of the Preimage in Machine Learning for Structured Data : Signal, Image and Graph (ANR, 2018-2023)PAUSE APi : in complement to ANR APi, this funding is from the national program for the urgent aid and reception of scientists in exile (PAUSE, from the Collège de France)
NormanD'eep : Deep learning and application (2018-2022)
Partner : GREYC
ASTURIAS : Newspaper image analysis (2018-2022)
Partners : GREYC, MIND group of LITIS
DeepInFrance : Machine learning with deep neural networks (ANR, 2018-2022)
Partners : INRIA Grenoble, I3S, GREYC, LIF-AMU, LIP6
LEAUDS : Learning to understand audio scenes (ANR, 2018-2022)
Partners : Netatmo, INRIA Nancy - Grand Est
ESCAPE : Exploring by Simulation Cities Awareness on Population Evacuation (ANR, 2017-2022)
Partners : UMR IDEES, UMI UMMISCO
DynACEV : Dynamics of Learning: Behaviour and Lived Experiences. The role of exploratory strategies (ANR, 2017-2022)
Partners : CETAPS, ISSUL (Lausanne), MIP, SOPESES (Nouvelle-Zélande), SPARC (UK)
OATMIL : Optimal Transport and Machine Learning (ANR, 2017-2022)
Partners : IRISA, Lagrange, Technicolor
HBDEX : Analysis of historical financial data (ANR, 2017-2022)
Partners : PSE, CAMS, IRISA
POPP : Project for the oceration of the Paris population census (1921-1946) (2020-2021) - voir démonstrateur ici
Partner : LARHRA
Partners : Consortium of 16 European partners
Read E-Doc : Development of a system for extracting specific alphanumeric information from dematerialized container shipment slips (2019-2021)
Partner : Toshiba
INTERNATIONAL
DEEDS: Deep Ensembles for Evolving Data Streams (CAPES COFECUB, 2025-2029)
DD-AnDet: Data-driven Anomaly Detectors for Time Series Data and Big Data (CAPES STIC-AmSud, 2024-2026)
MMLARP : Multimodal/Multiview Learning Applied to Real Problems (CAPES STIC-AmSud, 2024-2025)
WeSmile : Weakly supervised medical image segmentation (PHC Van Gogh, 2020-2022)
Partner : Eindhoven TU
EurHisFirm : The European project aims at designing a world-class research infrastructure to collect, merge, extract, collate, align and share detailed historical high-quality firm level data for Europe (H2020 EU, 2018-2021)
Partners : Consortium of 16 European partners
Our PhD students in industry (CIFRE programs) with companies DataHertz, Lokad, TEKLIA, Weinig Luxscan, Actemium, SOLYSTIC, Itekube
PIVAJ (Plateforme d'Indexation et de Visualisation d'Archives de Journaux) is a software suite for automatic analysis and display of digitized historical newspapers.The offline part extracts sections, articles and text from the digitized images, to build structured METS/ALTO files.
DocExplore is a free software suite to build and display augmented books from digitization. DocExplore is WySiWyG, no XML knowledge required, and works on Windows, MacOs and Linux.